

The cancer Biomedical Informatics Grid (caBIG®)

Kenneth H. Buetow, Ph.D. National Cancer Institute

NCI is Utilizing Informatics to Integrate Cancer Information

The caBIG® Initiative

caBIG® is an a virtual web of interconnected data, individuals, and organizations that redefines how research is conducted, care is provided, and patients/participants interact with the biomedical research enterprise.

caBIG® Vision

- Connect the cancer research community through a shareable, interoperable infrastructure
- Deploy and extend standard rules and a common language to more easily share information
- Build or adapt tools for collecting, analyzing, integrating and disseminating information associated with cancer research and care

caBIG® Capabilities Enable Discovery > Clinical Research > Clinical Care

Molecular Medicine

caBIG® Capabilities Enable Discovery > Clinical Research > Clinical Care

- Track clinical trial registrations
- Facilitate automatic capture of clinical laboratory data
- Manage reports describing adverse events during clinical trials
- Combine proteomics, gene expression, and other basic research data
- Submit and annotate microarray data
- Integrate microarray data from multiple manufacturers and permit analysis and visualization of data

Molecular Medicine

- Utilize the National Cancer Imaging Archive repository for medical images including CAT scans and MRIs
- Visualize images using DICOM-compliant tools
- Annotated Images with distributed tools

Pathology

- Access a library of well characterized, clinically annotated biospecimens
- Use tools to keep an inventory of a user's own samples
- Track the storage, distribution, and quality assurance of specimens

caBIG® and Clinical Research

Sample capabilities and tools:

- caBIG® -compatible Commercial Electronic
 Data Capture system available through
 Cancer Community-wide license
 (annoucement of selection in next couple of weeks)
- Clinical data exchange (caXchange)
- Virtual clinical data warehouse (CTODS)
- Study participant registry (C3PR)
- Study participant calendar (PSC)
- Adverse event management (caAERS)
- caBIG® -compatible systems architecture (caGrid)

caBIG® and Life Sciences

Sample capabilities and tools:

- Biobanking management systems (caTissue Core)
- Microarray data management system (caArray)
- Genome-wide data management system (caGWAS)
- In vivo image repository (NCIA)
- Virtual clinical data warehouse (CTODS)
- Microarray gene expression and sequence data analysis (geWorkbench)
- caBIG® -compatible systems architecture (caGrid)

Data Sharing and Security

Sample resources:

- caBIG[®] Policies
- Processes and Best Practices
- Model Documents

caBIG®: an open SOA with shared community semantics

Boundaries and Interfaces

- Focus on boundaries and interfaces, how things fit together, not on the internal details
- Once they're built: assume that will be diverse & changing

The glue that binds parts together is middleware infrastructure

Shape of boundary is defined in APIs

Standards-based Interoperability: caCORE

- Community driven
- Dynamic implementation
 - Built to be upgraded as standards "harden", and domains expand

biomedical objects

common data elements

controlled vocabulary

caGrid 1.1 Conceptual View

Connected with caBIG®

- caBIG[®] adoption is unfolding in:
 - 56 NCI-designated Cancer Centers
 - 16 NCI Community Cancer Centers
- caBIG[®] being integrated into federal health architecture to connect National Health Information Network
- Global Expansion
 - United Kingdom
 - China
 - India
 - Latin America

NCI-Designated Cancer Centers, Community Cancer Centers, and Community Oncology Programs

caBIG® Enterprise Support Network: Knowledge Centers

- caGrid: The Ohio State University and The Ohio State Comprehensive Cancer Center, with the University of Chicago and the Argonne National Lab
- Clinical Trials Management Systems: Duke University Comprehensive Cancer Center, with Robert H. Lurie Comprehensive Cancer Center at Northwestern University, Cancer and Leukemia Group B – Information Systems (CALGB-IS), and SemanticBits
- Data Sharing and Intellectual Capital: University of Michigan
- Molecular Analysis Tools: Columbia University Herbert Irving Comprehensive Cancer Center with The Broad Institute of MIT and Harvard
- Tissue/Biospecimen Banking and Technology Tools: Siteman Cancer Center, Washington University at St. Louis
- Vocabulary: Mayo Clinic with SemanticBits

Interoperability Goes Global

- UK National Cancer Research Institute (Shared interoperable biomedical infrastructure)
- China/Shanghai Center for Bioinformatics Technology Beijing Cancer Hospital (caBIG® technology for life sciences and clinical research)
- Indian National Knowledge Commission (Nationwide IT infrastructure linking all universities, major hospitals, research labs and libraries; cancer and beyond)

Grid of Grids...

NHLBI Grid (CVRG)

caGrid

NCRI ONIX

caBIG® and The Cancer Genome Atlas (TCGA)

Connecting multiple sources, experiments, and data types

Three forms of cancer

glioblastoma multiforme (brain)

squamous carcinoma (lung)

serous cystadenocarcinoma (ovarian)

12 Organizations

Biospecimen Core Resource

7 Cancer Genomic Characterization Centers

> 3 Genome Sequencing Centers

Data Coordinating Center

Clinical diagnosis

- Treatment history
- Histologic diagnosis
- Pathologic status
- Tissue anatomic site
- Surgical history
- Gene expression
- Chromosomal copy number
- Loss of heterozygosity
 - Methylation patterns
 - miRNA expression
 - **DNA** sequence

A single web-based portal for all analyses – http://cma.nci.nih.gov

Gene View

Genome View

Clinical View

Analysis Tools

Gene View

Visualize gene expression, copy number, SNP, and pathway data on a gene by gene basis. Generate detailed study related reports for a given gene.

Available resources include: Gene Expression Plots, KM Survival Plots, CGWB Integration, and Pathway Visualizations.

Existing Users:

user:

login

Additional Information:

- Register
- · Provide your feedback

A single web-based portal for all analyses - http://cma.nci.nih.gov

A single web-based portal for all analyses – http://cma.nci.nih.gov

Gene View

Genome View

Clinical View

Analysis Tools

Additional Information:

- Register
- Provide your feedback

A single web-based portal for all analyses - http://cma.nci.nih.gov

Gene View

Genome View

Clinical View

Analysis Tools

Additional Information:

- Register
- Provide your feedback

Comprehensive Summary

Putative somatic mutations can be manually reviewed

Example: a frameshift mutation in EGFR in paired tumor/normal

Protein structure view of EGFR mutations

3D Structure Viewer

Gene expression analyses related to clinical outcome

Administration:

- View Results
- List Management
- Help

News:

- Data Version
- TCGA newsletter -March 2008
- Number of Patients -110
- Number of Expression Arrays - 985
- Number of Copy Number Arrays - 361

PatientDID Lists:

- ALL PATIENTS
- Low_Survival
- Med Survival
- High Survival
- TP53 SomaticMu...
- ◆ EGFR_SomaticMu...
- PTEN SomaticMu...
- RB1 SomaticMut...
- DST_SomaticMut...
- NF1 SomaticMut...
- CDKN2A Somatic...
- 05///201
- PIK3R1_Somatic...
- ◆ CENPF_SomaticM...
- ITGB3 SomaticM...

Gene Lists:

TCGA Target Se...

Reporter Lists:

High order analyses: Pathways

Pathways and Associated Anomalies

144		>>	••	100	~
First	Prev	Next	Last	Rows Displayed	

309 results found, displaying 1 to 100	09 results found, displaying 1 to 100								
Pathway	Any Anomaly/Agent	Mutated	Amplified	Deleted	Agents				
ADP-Ribosylation Factor	•		•						
AKAP95 Role in Mitosis and Chromosome Dynamics									
AKT Signaling Pathway									
ALK in Cardiac Myocytes	•				•				
ATM Signaling Pathway	•	•			•				
Acetylation and Deacetylation of RelA in Nucleus									
Actions of Nitric Oxide in the Heart									
Activation of CSK Inhibits Signaling through the T Cell Receptor	•		•		•				
Activation of PKC through G-Protein Coupled Receptors									
Activation of cAMP-dependent Protein Kinase, PKA	•		•						
Acute Myocardial Infarction	•			•					
Adhesion Molecules on Lymphocyte									
Adhesion and Diapedesis of Granulocytes									
Adhesion and Diapedesis of Lymphocytes	•				•				
Agrin in Postsynaptic Differentiation	•	•	•	•					
AhR Signal Transduction Pathway									
Alpha-synudein and Parkin-mediated Proteolysis in Parkinson';s Disease									
Alternative Complement Pathway	•				•				
Angiotensin II Mediated Activation of JNK Pathway via Pyk2 Dependent Signaling	•	•	•						

EGFR network mutation profile through CMA

caBIG®: Power of Connection

